# 7) 熊本県南部地域の地下水における金属成分と地質の関係

渡邊和博<sup>\*1</sup> 前田敏孝<sup>\*2</sup> 内田大智 石原宏明 小林亜由美<sup>\*3</sup> 本田智宣

## 要 旨

熊本県南部地域(八代地域, 芦北地域及び球磨地域)の地下水について金 属成分の概況調査を実施するとともに,地下水の金属成分と地質の関係性を 考察した。その結果,安山岩の影響が考えられる地下水ではバナジウム及び ルビジウム濃度が高くなり,流紋岩の影響が考えられる地下水ではバナジウ ム濃度が高くならないものの,ルビジウム濃度がさらに高くなる傾向となっ た。これは他の地域で報告されている内容と合致する結果となった。

# キーワード:地下水、地質、火成岩、バナジウム、ルビジウム

#### はじめに

熊本県では、生活用水の多くを地下水に依存してお り、地下水の量的・質的保全は県民の生活環境保全の 面で非常に重要である。近年、県内における地下水の 硝酸性窒素汚染が問題となっているが、一般的な地下 水汚染としては、ほかにも金属や揮発性有機化合物に よるものが知られている。

金属による地下水汚染の原因は、事業所排水等が地 下浸透することで引き起こされる人為由来のもの、土 壌等に高濃度に重金属が含まれていることを要因とす る自然由来のもの、そしてこれらを複合したものが考 えられる。なお、何を原因としてこれらの汚染が引き 起こされたかを判別できるようにするためには、県内 地下水におけるバックグラウンドレベルでの重金属成 分の把握が望ましい。これまで木庭ら<sup>1)</sup>が県北地域に おける地下水中の金属成分の調査を実施したことはあ るものの、県南地域で実施した例はない。

そこで、今回、筆者らは八代地域、芦北地域及び球 磨地域にかけての熊本県南部地域(以下、県南地域と いう)を対象地域とした金属成分の概況調査を実施し た。また、河川の金属成分と地質との関係性に関する 先行研究等<sup>2-4)</sup>を参考に、地下水の金属成分と地質と の関係性について考察したので報告する。

#### 調査地域

図1に示すとおり,県南地域は,多種多様な地質体 が分布している。これまでの研究<sup>5-7)</sup>から地質に着目 すると,八代地域は主に秩父帯と呼ばれるジュラ紀~ 前期白亜紀の付加体からなり,その南側では四万十帯 と呼ばれる白亜紀~古第三紀の付加体からなっている。 また,芦北地域は後期中新世以降の火山活動によって 形成された肥薩火山岩類,球磨地域は人吉盆地を中心 に中期更新世以降の入戸火砕流堆積物や阿蘇火砕流堆 積物からなるとされている。このため,県南地域にな るにつれて,地質の年代は新しい時期のものとなる。

今回,県南地域の調査にあたり,熊本県内各地の地 下水情報等が書籍としてまとめられた「水は伝える熊 本の湧泉」<sup>8)</sup>や熊本県名水百選<sup>9)</sup>を参考とし,地質との 関係性を考慮したうえで八代地域10地点(七郎次水源 は下益城郡だが,八代地域に含む),球磨地域8地点, 芦北地域5地点の全23地点を調査地点として選定した。 図1に調査地点を示すが,21地点は湧水であり,2地 点は動力により汲み上げられた地下水となっている。

#### 調査内容

平成 29 年 4 月から平成 30 年 3 月まで,全 23 地点に ついて,概ね春,夏,秋,冬となる時期に計 4 回調査

\*1 現病院局診療部 \*2 現環境生活部環境局環境保全課 \*3 現健康福祉部健康局薬務衛生課



八代地域:①ジュラ紀~前期白亜紀(秩父帯)

球磨地域:②白亜紀~古第三紀(四万十帯),③後期中新世以降

芦北地域:④中期更新世以降

## ·八代地域(10地点)

| 地点<br>番号 | 地点名            | 住所          |
|----------|----------------|-------------|
| 1        | 七郎次水源          | 下益城郡美里町早楠   |
| 2        | 冷水(ひやみず)       | 八代市泉町葉木     |
| 3        | 古屋敷水源          | 八代市泉町下岳     |
| 4        | 清水堂湧水          | 八代市東陽町南     |
| 5        | 如見水源           | 八代市岡町谷川     |
| 6        | 妙見中宮           | 八代市妙見町      |
| 7        | 子安観音(※)        | 八代市妙見町      |
| 8        | 高田水源           | 八代市豊原下町     |
| 9        | 日奈久温泉神社(※)     | 八代市日奈久上西町   |
| 10       | さくらの雫          | 八代市坂本町百済来   |
| ※は湧      | 水ではなく、動力により汲み上 | げられた地下水である。 |

·芦北地域(8地点)

| 地 番号 | 地点名      | 住所          |
|------|----------|-------------|
| 11   | 岩戸水源     | 球磨郡球磨村神瀬    |
| 12   | 蔀地区水源地   | 球磨郡球磨村蔀     |
| 13   | 石坂井川     | 人吉市中神町      |
| 14   | 茂賀野水源    | 人吉市上漆田町     |
| 15   | 浜宮神社の湧水  | 球磨郡相良村柳瀬    |
| 16   | 池の王神社の湧水 | 球磨郡相良村深水    |
| 17   | 天子の水     | 球磨郡あさぎり町深田西 |
| 18   | 権現谷のラムネ水 | 球磨郡あさぎり町上西  |

·球磨地域(5地点)

| 地点<br>番号 | 地点名        | 住所        |
|----------|------------|-----------|
| 19       | 地蔵谷水源      | 葦北郡芦北町古石  |
| 20       | 寒川水源       | 水俣市久木野    |
| 21       | 地蔵さんの水     | 水俣市越小場    |
| 22       | 冷水(ひやすじ)水源 | 水俣市袋      |
| 23       | 中尾水源       | 葦北郡津奈木町岩城 |

## 図1 調査地点の概略

a) 調査地域の地質及び全体図 b)調査地域の拡大図

a)は産総研地質調査総合センターウェブサイト(https://gbank.gsj.jp/geonavi/geonavi.php)のシームレ ス地質図基本版をもとに,筆者が加筆修正したもの。 を実施した。なお,調査の際は,採水前日及び当日の 雨天を避けることとした。

現地にてポリ製の柄杓により試料をポリ瓶に採水し た後,実験室に持ち帰り各種項目を測定した。調査項 目は,pH,EC(導電率),イオン成分(Na<sup>+</sup>,NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>,Mg<sup>2+</sup>,Ca<sup>2+</sup>,F<sup>-</sup>,Cl<sup>-</sup>,NO<sub>2</sub><sup>-</sup>,Br<sup>-</sup>,NO<sub>3</sub><sup>-</sup>,SO<sub>4</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>)及び金属成分(Li, B,Al等21項目)である。

pH 及び EC は電極法, HCO<sub>3</sub>-は硫酸滴定法, HCO<sub>3</sub>-を除くイオン成分はイオンクロマトグラフ法(以下, IC 法という), 金属成分は誘導結合プラズマ質量分析 法(以下, ICP-MS 法という)で測定した。これらの 測定方法は環境省ホームページの環境基準・法令等に 記載された測定方法<sup>10)</sup>に基づいて実施しており,本所 が独自に測定した項目についても,これらの測定方法 に準じている。測定機器について, IC 法では Dionex ICS-2100, ICP-MS 法では ICP-MS Agilent7900 を用い た。

#### 結果及び考察

#### 1 県南地域の概況

#### 1-1. pH 及び EC

調査した県南地域 23 地点の測定結果について,各項 目の平均値を表 1 に示す。NO<sub>2</sub><sup>-</sup>及び Br<sup>-</sup>は全地点で NO<sub>2</sub><sup>-</sup>:0.1 mg/L, Br<sup>-</sup>:0.1 mg/L 未満であったことから, 表には記載していない。

pH については概ね 7.0 前後を示しており,八代地域 及び芦北地域では 7.0 を上回るところが多く, 球磨地 域では 7.0 を下回るところが多い傾向となった。

EC については, 全 23 地点のうち, 7.子安観音の 47.0 μ S/cm が最低であり, 18.権現谷のラムネ水の 862.5 μ S/cm が最高であった。EC が低い(すなわち,溶存成分 が少ない)地点は涵養後の地中における水と岩石・土 壌類との接触が少なく, 流動時間が短いことが示唆さ れる<sup>11)</sup>。7.子安観音及び 21.地蔵さんの水はこうした地 下水であることが考えられる。なお, 藪崎らが環境省 の平成の名水百選に選定された全国の湧水の水質を調 べたところ, EC は 16.7 μ S/cm~456.0 μ S/cm となって おり<sup>12)</sup>, 18.権現谷のラムネ水は, この範囲を大きく超 えていた。

|           | 地点 | 十十五      | pł  | ł   | FO    | su + | NILL +          | 1/ <del>1</del> | 2+              | 0 2+  |      | 015 | NO -            | 20 2- | 100 -            |
|-----------|----|----------|-----|-----|-------|------|-----------------|-----------------|-----------------|-------|------|-----|-----------------|-------|------------------|
|           | 番号 | 地点有      | 最大值 | 最小值 | EU    | Na   | NH <sub>4</sub> | K               | Mg <sup>-</sup> | Gar   | F    | GI  | NU <sub>3</sub> | 504   | HCU <sub>3</sub> |
|           | 1  | 七郎次水源    | 7.6 | 7.9 | 76.6  | 2.9  | <0.1            | 0.2             | 1.3             | 9.4   | <0.1 | 2.1 | 2.1             | 2.1   | 40.6             |
| 八代地域      | 2  | 冷水       | 7.8 | 8.0 | 114.9 | 2.4  | <0.1            | 0.1             | 0.5             | 19.2  | <0.1 | 2.2 | 3.8             | 2.4   | 61.2             |
|           | 3  | 古屋敷水源    | 7.3 | 7.9 | 175.3 | 6.2  | <0.1            | 0.7             | 1.9             | 25.9  | <0.1 | 2.4 | 2.4             | 7.9   | 89.4             |
|           | 4  | 清水堂湧水    | 7.8 | 8.1 | 160.2 | 4.1  | <0.1            | 0.5             | 2.4             | 23.6  | <0.1 | 2.9 | 3.4             | 6.6   | 83.7             |
|           | 5  | 如見水源     | 7.8 | 8.0 | 229.8 | 7.0  | <0.1            | 0.6             | 5.7             | 30.4  | 0.1  | 5.6 | 4.2             | 13.4  | 111.8            |
|           | 6  | 妙見中宮     | 6.3 | 7.3 | 173.3 | 6.9  | <0.1            | 0.6             | 4.8             | 18.6  | <0.1 | 3.2 | 2.8             | 20.7  | 53.7             |
|           | 7  | 子安観音     | 7.2 | 7.6 | 47.0  | 4.2  | <0.1            | 0.5             | 0.6             | 2.3   | <0.1 | 2.8 | 1.0             | 5.7   | 15.8             |
|           | 8  | 高田水源     | 6.9 | 7.2 | 112.3 | 4.9  | <0.1            | 1.2             | 1.8             | 12.4  | <0.1 | 3.4 | 3.9             | 6.9   | 40.8             |
|           | 9  | 日奈久神社    | 6.9 | 7.4 | 76.4  | 5.7  | <0.1            | 0.5             | 1.9             | 4.8   | <0.1 | 4.4 | 2.2             | 7.1   | 27.3             |
|           | 10 | さくらの雫    | 7.6 | 8.1 | 157.3 | 3.9  | <0.1            | 0.1             | 9.8             | 12.7  | <0.1 | 3.2 | 1.4             | 7.2   | 90.3             |
|           | 11 | 岩戸水源     | 7.7 | 8.0 | 191.4 | 2.6  | <0.1            | 0.3             | 1.0             | 35.1  | <0.1 | 2.7 | 3.1             | 2.9   | 109.2            |
|           | 12 | 蔀地区水源地   | 7.8 | 8.1 | 162.3 | 3.2  | <0.1            | 0.3             | 1.7             | 25.8  | <0.1 | 4.0 | 1.8             | 3.8   | 85.3             |
| 球         | 13 | 石坂井川     | 6.3 | 7.3 | 103.7 | 4.9  | <0.1            | 2.7             | 1.8             | 8.3   | <0.1 | 3.0 | 15.1            | 11.4  | 16.3             |
| 磨         | 14 | 茂賀野水源    | 7.2 | 7.6 | 101.0 | 4.2  | <0.1            | 1.4             | 3.3             | 8.7   | <0.1 | 3.2 | 6.3             | 1.1   | 45.0             |
| 地         | 15 | 浜宮神社の湧水  | 6.3 | 6.4 | 201.2 | 9.9  | <0.1            | 8.9             | 3.9             | 17.3  | <0.1 | 5.3 | 11.8            | 14.3  | 39.6             |
| 域         | 16 | 池の王神社の湧水 | 6.5 | 6.9 | 121.5 | 7.5  | <0.1            | 4.0             | 2.4             | 8.8   | <0.1 | 5.7 | 17.2            | 1.7   | 28.7             |
|           | 17 | 天子の水     | 6.5 | 6.6 | 99.2  | 6.8  | <0.1            | 5.0             | 1.7             | 6.1   | <0.1 | 3.0 | 8.1             | 1.6   | 25.5             |
|           | 18 | 権現谷のラムネ水 | 5.9 | 6.0 | 862.5 | 25.0 | 0.4             | 1.6             | 18.4            | 133.4 | 0.1  | 1.6 | 0.1             | 2.2   | 180.2            |
| 普         | 19 | 地蔵谷水源    | 7.7 | 8.0 | 93.2  | 5.4  | <0.1            | 1.8             | 2.7             | 7.7   | <0.1 | 3.5 | 0.8             | 1.7   | 52.8             |
| 球磨地域 芦北地域 | 20 | 寒川水源     | 7.8 | 8.0 | 77.4  | 4.6  | <0.1            | 1.8             | 1.8             | 6.2   | <0.1 | 3.3 | 0.7             | 2.9   | 40.2             |
|           | 21 | 地蔵さんの水   | 6.8 | 6.9 | 56.1  | 4.0  | <0.1            | 1.3             | 1.4             | 3.4   | <0.1 | 2.9 | 0.5             | 1.1   | 23.7             |
| 域         | 22 | 冷水水源     | 7.1 | 7.5 | 113.8 | 6.2  | <0.1            | 1.7             | 3.8             | 9.1   | <0.1 | 5.0 | 3.8             | 1.8   | 54.0             |
| ~**       | 23 | 中尾水源     | 7.8 | 8.1 | 113.9 | 6.2  | <0.1            | 1.7             | 3.1             | 8.0   | <0.1 | 4.0 | 0.7             | 4.4   | 61.6             |

表1 調査地点ごとの水質測定結果 (pH, EC, イオン成分)

\* ECの単位は µS/cm, イオン成分の単位は mg/L である。

## 1-2. イオン成分

表1の測定結果から作成したヘキサダイアグラムを 図2に、トリリニアダイアグラムを図3に示す。

ヘキサダイアグラムでは、ほとんどの地点が Ca-HCO<sub>3</sub>型を示した。より極端な Ca-HCO<sub>3</sub>型を示した 地下水として、球磨地域の 11.岩戸水源及び 12.蔀地区 水源地があるが、この周辺には球泉洞や神瀬石灰洞窟 があり、石灰岩が水の侵食を受けて形成される鍾乳洞 が存在する。そのため、一帯に石灰岩質の地質が分布 することが明らかであり、地下水の水質形成に地質の 影響が反映されたものと考えられた。球磨川水系の河 川水質を分析した植木<sup>2)</sup>も流域地質の影響が河川水質 の Ca<sup>2+</sup>や HCO<sub>3</sub>の濃度に反映されるとしており、地質 が水質形成に影響を与えるとする考えが支持される。

トリリニアダイアグラムについては,大部分の地点 は通常の地下水が多く分類されるアルカリ土類炭酸塩 型を示した。一方,7.子安観音はアルカリ炭酸塩型(滞 留時間の長い深層地下水でよく見られる水質組成),13. 石坂井川はアルカリ土類非炭酸塩型(熱水や化石水が 含まれている地下水)を示した。一般的に地下水が深 層の帯水層にあり,地下での滞留時間が長くなると, 地下水質がアルカリ土類炭酸塩型からアルカリ炭酸塩 型に移行すると考えられている<sup>13)</sup>。しかし,1-1.より 7.子安観音は EC が低く流動時間が短い地下水である と示唆されたことから、トリリニアダイアグラムの考 察と矛盾する。よって、今回の測定結果だけで考察す ることは困難であると考えられるが、この地下水は地 質の影響を受けていることがわかった。13.石坂井川に ついては NO3<sup>-</sup>を除いたヘキサダイアグラムの形を見 ると、15.浜宮神社の湧水や16.池の王神社の湧水に類 似していることがわかる。トリリニアダイアグラムで は、陰イオン濃度全体に対する Cl-及び SO42-濃度によ ってその位置が決まるため、熱水や化石水の影響を受 けたわけではなく, 陰イオン濃度に占める NO3-濃度が



図2 各地域のヘキサダイアグラム



図3 各地域のトリリニアダイアグラム

大きかったことで,結果としてアルカリ土類非炭酸塩 型に分類された可能性が考えられる。

これより,選定した23地点は地質の影響を受けるこ とはわかったが、図1の年代別の地層により測定結果 が分類される程の大きな差はなかったと考える。しか し,この23地点は通常の地下水であることがわかった ため、金属成分も地質の影響を受けることを前提とし て考察することができる。

## 1-3. 金属成分

金属成分について,各測定項目の平均値及び標準偏 差を表2に示す。ただし,18.権現谷のラムネ水につい ては,1-1. で述べたように EC が他の調査地点と比べ てかなり高く,金属成分についても Mn,Fe,Sr等の 濃度が極めて高いことから,他の湧水と大きく異なる 性質であると考えられたため,球磨地域の平均値及び 標準偏差の算出から除外した。また,次の章の金属と 地質の関係においても考察対象から除外している。

ICP-MS 法で測定できる金属成分のうち、地下水の

環境基準として Cd, Pb, As, Se, B が定められている が,今回調査した 23 地点において,基準超過は確認さ れなかった。なお, Al, Fe を除くほとんどの元素では 調査時期による測定値のばらつきが少なく,季節を通 じて濃度がほぼ一定であることが考えられた。同じ地 域であっても地点による濃度のばらつきが大きく,明 確に地域差があるとは判断できなかった。しかし,地 質の年代別では濃度差のある元素が確認できるように 感じられたため,より詳細に考察することとした。

## 2 地下水の金属成分と地質の関係

## 2-1. 岩石の種類及び各地域の地質

地質を構成する岩石は大きく分けて,堆積岩,火成 岩,変成岩に分類される(表3)。堆積岩は降り積もっ た砂や泥などが長い時間をかけて押し固められてでき たもので,砂岩,泥岩などに加え,生物起源の堆積岩 として石灰岩やチャートがある。火成岩はマグマが冷 えて固まったもので,地表付近で急速に冷えて固まっ たものを火山岩,地下でゆっくり冷えて固まったもの を深成岩とよぶ。さらに,その組成によって火山岩は

|    |        | 八代地域             | 球磨              | 地域              | 芦北地域            | 球磨地域         |
|----|--------|------------------|-----------------|-----------------|-----------------|--------------|
|    |        | ①ジュラ把~前県白亜紀(秩父帯) | ②白亜紀~古第三紀(四万十年) | ③後期中新世以降        | ④中期更新世以降        | 権現谷のラムネ水     |
|    |        | (10地点, n = 40)   | (2地点, n = 8)    | (5地点, n = 20)   | (5地点, n = 20)   | (1地点, n = 4) |
| Li | (ug/L) | 0.93 ± 1.17      | 0.80 ± 0.22     | 1.90 ± 1.10     | 0.69 ± 0.28     | 37.98 ± 1.36 |
| В  | (µg/L) | 24.6 ± 24.8      | 5.60 ± 1.09     | 9.07 ± 3.46     | 6.45 ± 1.18     | 30.08 ± 0.43 |
| AI | (uɛ/L) | 54.77 ± 60.23    | 12.50 ± 12.43   | 8.72 ± 13.24    | 17.37 ± 16.01   | 10.33 ± 6.48 |
| V  | (ue/L) | 1.21 ± 1.54      | $0.65 \pm 0.33$ | 0.88 ± 0.86     | 7.67 ± 4.20     | 0.10 ± 0.00  |
| Cr | (ug/L) | 0.85 ± 1.58      | $0.35 \pm 0.12$ | 0.13 ± 0.05     | $0.27 \pm 0.19$ | 0.10 ± 0.00  |
| Mn | (ug/L) | 1.44 ± 1.17      | 0.54 ± 0.11     | 0.55 ± 0.22     | 0.56 ± 0.23     | 1900 ± 163   |
| Fe | (ug/L) | 37.21 ± 38.94    | 7.48 ± 7.85     | 4.69 ± 7.34     | 8.63 ± 7.68     | 22000 ± 6790 |
| Ni | (ug/L) | 0.31 ± 0.45      | < 0.1 (※)       | < 0.1 (※)       | 0.11 ± 0.02     | 1.93 ± 0.13  |
| Cu | (µg/L) | 0.66 ± 1.69      | 0.10 ± 0.00     | 0.16 ± 0.11     | < 0.1 (※)       | 0.20 ± 0.14  |
| Zn | (ug/L) | 0.75 ± 0.80      | 0.50 ± 0.00     | 0.52 ± 0.09     | 0.50 ± 0.00     | 12.48 ± 1.63 |
| As | (µg/L) | 0.32 ± 0.29      | 0.23 ± 0.09     | 0.24 ± 0.15     | 0.13 ± 0.05     | 0.65 ± 0.37  |
| Se | (µg/L) | 0.10 ± 0.00      | < 0.1 (※)       | < 0.1 (**)      | < 0.1 (※)       | < 0.1 (%)    |
| Rb | (uɛ/L) | 0.50 ± 0.40      | 0.43 ± 0.0      | 17.2 ± 11.0     | 5.75 ± 0.61     | 3.13 ± 0.17  |
| Sr | (ue/L) | 70.66 ± 44.52    | 51.60 ± 5.02    | 101.5 ± 44.24   | 52.44 ± 16.77   | 1600 ± 102   |
| Mo | (ug/L) | 0.28 ± 0.38      | 0.16 ± 0.07     | 0.10 ± 0.00     | 0.13 ± 0.06     | 0.10 ± 0.00  |
| Cd | (ug/L) | < 0.1 (※)        | < 0.1 (※)       | < 0.1 (※)       | < 0.1 (※)       | < 0.1 (**)   |
| Sb | (ug/L) | $0.03 \pm 0.02$  | $0.03 \pm 0.02$ | $0.03 \pm 0.02$ | 0.01 ± 0.00     | 0.18 ± 0.07  |
| Cs | (ug/L) | < 0.1 (※)        | 0.10 ± 0.00     | 0.47 ± 0.43     | 0.14 ± 0.05     | 0.30 ± 0.00  |
| Ba | (ug/L) | 6.98 ± 4.73      | 73.00 ± 52.65   | 34.82 ± 25.83   | 2.26 ± 1.18     | 220 ± 12.5   |
| Рb | (µg/L) | 0.12 ± 0.11      | 0.10 ± 0.00     | 0.10 ± 0.00     | < 0.1 (※)       | 0.18 ± 0.15  |
| U  | (µg/L) | 0.07 ± 0.12      | 0.08 ± 0.04     | 0.13 ± 0.17     | 0.03 ± 0.02     | 0.01 ± 0.00  |

表2 地域別の水質測定結果(金属成分)

※は全地点の調査結果が<0.1µg/L未満であったことを示す。

流紋岩・デイサイト,安山岩,玄武岩に分かれ,深成 岩は斑レイ岩,閃緑岩,花崗岩に分かれる。変成岩は 既にある岩石(堆積岩や火成岩)が高温や高圧などの 条件にさらされてできたものである<sup>14)</sup>。そのため,同 じ変成岩に分類される岩石であっても,堆積岩が作用 を受けてできた場合と火成岩が作用を受けてできた場 合では,その化学組成が大きく異なる可能性がある。

同様のことは堆積岩においても言うことができる。 火成岩の起源が全てマグマによるものであることを考 えると,火成岩は同一岩石種内での化学組成変動が小 さいはずである。すなわち,異なる地点であっても, 同じ火成岩の影響を受けた地下水であれば,ある種の 元素が一定の濃度範囲に収まる可能性が考えられる。

各地域の調査地点の地質を構成する岩石について,

#### 表3 主な岩石の分類

| 岩石の種 | 重類  | 主な岩石                |  |  |  |  |  |  |  |
|------|-----|---------------------|--|--|--|--|--|--|--|
| 堆積岩  |     | 砂岩, 泥岩, チャート, 石灰岩 等 |  |  |  |  |  |  |  |
| 火成岩  | 火山岩 | 流紋岩,安山岩,玄武岩 等       |  |  |  |  |  |  |  |
|      | 深成岩 | 花崗岩、閃緑岩、斑レイ岩        |  |  |  |  |  |  |  |
| 変成岩  |     | 片岩,角閃岩,緑色岩 等        |  |  |  |  |  |  |  |

国立研究開発法人産業技術総合研究所地質調査総合セ ンターが提供している20万分の1日本シームレス地質 図<sup>15)</sup>を用いて確認した。その結果,八代地域は主に堆 積岩,芦北地域一帯及び人吉盆地を中心とした球磨地 域は火成岩であることがわかった。

#### 2-2. バナジウム(V)と地質の関係

火成岩の基本的な区分は二酸化ケイ素の含有量でな されており、火山岩の場合、その割合の多い順に流紋 岩・デイサイト、安山岩、玄武岩となっている(表 4)。 過去の研究において、(V)は、二酸化ケイ素の含有量 が低い安山岩や玄武岩といった岩石ほど豊富に含まれ ており、二酸化ケイ素の含有量が高い流紋岩では乏し いことが示されている<sup>16</sup>。これをもとに、玄武岩質の

| 表4 火成岩の | 区分 |
|---------|----|
|---------|----|

|       | (SiO₂) 多 ← | $\longrightarrow$ | · 少(SiO <sub>2</sub> ) |
|-------|------------|-------------------|------------------------|
|       | 【酸性岩】      | 【中性岩】             | 【塩基性岩】                 |
| (火山岩) | 流紋岩 デイサイト  | 安山岩               | 玄武岩                    |
| (深成岩) | 花崗岩        | 閃緑岩               | 斑レイ岩                   |

|   | 15.浜宮神社の湧水 16.池の王神社の 17.天子の水<br>湧水 17.天子の水 | $2.00 \pm 0.57$ $2.68 \pm 0.36$ $3.30 \pm 0.14$ | $14.55 \pm 0.71$ $7.33 \pm 0.83$ $7.85 \pm 0.26$ | $2.33 \pm 1.63$   $21.13 \pm 23.99$   $1.60 \pm 0.36$ | $0.43 \pm 0.05$ $0.43 \pm 0.05$ $0.75 \pm 0.06$ | <pre>&lt;0.1 (※) 0.20 ± 0.00 0.15 ± 0.06</pre> | <pre>&lt;0.5 (※) 0.75 ± 0.50 &lt;0.5 (※)</pre> | $4.43 \pm 0.48$ 10.38 $\pm 15.63$ 1.75 $\pm 0.37$ | <pre>&lt;0.1 (%) &lt;0.1 (%) &lt;0.1 (%)</pre> | <pre>&lt;0.1 (%) 0.10 ± 0.00 &lt;0.1 (%)</pre> | <pre>&lt;0.5 (※) 0.60 ± 0.20 0.50 ± 0.00</pre> | $0.25 \pm 0.06$   $0.28 \pm 0.05$   $0.48 \pm 0.05$ | <pre>&lt;0.1 (%) &lt;0.1 (%) &lt;0.1 (%)</pre> | $35.10 \pm 4.59$ $17.25 \pm 0.58$ $20.30 \pm 0.27$ | 182.08 ± 21.82   103.18 ± 6.29   81.08 ± 3.07 | $0.1 \pm 0.00$ < $(0.1 (\%)$<br>0.10 $\pm 0.00$ | <pre>&lt;0.1 (%) &lt;0.1 (%) &lt;0.1 (%)</pre> | $0.04 \pm 0.02$ $0.04 \pm 0.02$ $0.05 \pm 0.02$ | $0.20 \pm 0.00$   $1.08 \pm 0.10$   $0.85 \pm 0.06$ | 38.80 ± 4.33   47.20 ± 3.27   72.55 ± 4.20 | <pre>&lt;0.1 (%) 0.10 ± 0.00 &lt;0.1 (%)</pre> | 0.45 ± 0.08   0.07 ± 0.01   0.11 ± 0.01 | デイサイト・流紋 デイサイト・流紋<br>岩、海成または非 岩、海成または非 デイサイト・流紋岩<br>海成堆積岩類 海成堆積岩類 |                   |
|---|--------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------|
|   | 14.茂賀野水源                                   | 0.48 ± 0.05                                     | 4.88 ± 0.40                                      | 14.78 ± 7.21                                          | $2.53 \pm 0.13$                                 | 0.10 ± 0.00                                    | <0.5 (※)                                       | $5.05 \pm 3.08$                                   | <0.1 (※)                                       | 0.38 ± 0.05                                    | <0.5 (※)                                       | 0.10 ± 0.00                                         | <0.1 (※)                                       | $4.65 \pm 0.13$                                    | $75.65 \pm 2.06$                              | <0.1 (※)                                        | <0.1 (※)                                       | 0.01 ± 0.00                                     | 0.10 ± 0.00                                         | $1.58 \pm 0.29$                            | <0.1 (※)                                       | 0.02 ± 0.00                             | 安山岩·玄武岩質<br>安山岩、海成また<br>は非海成堆積岩<br>類                              | な示す               |
|   | 13.石坂井川                                    | $1.03 \pm 0.30$                                 | $10.75 \pm 1.03$                                 | $1.70 \pm 1.34$                                       | 0.28 ± 0.10                                     | <0.1 (※)                                       | <0.5 (※)                                       | 0.80 ± 0.41                                       | <0.1 (※)                                       | <0.1 (※)                                       | <0.5 (※)                                       | 0.10 ± 0.00                                         | <0.1 (※)                                       | 8.73 ± 0.87                                        | 65.28 ± 3.34                                  | <0.1 (※)                                        | <0.1 (※)                                       | 0.01 ± 0.00                                     | <0.1 (※)                                            | 13.98 ± 1.14                               | <0.1 (※)                                       | <0.01 (※)                               | デイサイト・流紋<br>岩、段丘堆積物                                               | 庙 井 洋 方 木 っ ナ ー レ |
|   | 12.蔀地区水源地                                  | $0.63 \pm 0.05$                                 | $6.28 \pm 1.12$                                  | $4.93 \pm 2.37$                                       | 0.95 ± 0.10                                     | 0.45 ± 0.06                                    | <0.5 (※)                                       | $2.85 \pm 2.00$                                   | <0.1 (※)                                       | <0.1 (※)                                       | <0.5 (※)                                       | 0.30 ± 0.00                                         | <0.1 (%)                                       | 0.45 ± 0.06                                        | $49.85 \pm 5.32$                              | $0.23 \pm 0.05$                                 | <0.1 (※)                                       | 0.03 ± 0.01                                     | <0.1 (※)                                            | 121.80 ± 10.23                             | <0.1 (※)                                       | 0.04 ± 0.01                             | 玄武岩、段丘堆積<br>物                                                     | - オント 守嶋天園        |
|   | 11.岩戸水源                                    | 0.98 ± 0.17                                     | $4.93 \pm 0.57$                                  | 20.13 ± 14.18                                         | 0.35 ± 0.06                                     | $0.25 \pm 0.06$                                | 0.58 ± 0.15                                    | 12.10 ± 9.10                                      | <0.1 (※)                                       | 0.10 ± 0.00                                    | <0.5 (※)                                       | $0.15 \pm 0.06$                                     | <0.1 (※)                                       | $0.40 \pm 0.00$                                    | $53.33 \pm 4.74$                              | 0.10 ± 0.00                                     | <0.1 (※)                                       | $0.02 \pm 0.02$                                 | <0.1 (※)                                            | 24.13 ± 1.94                               | <0.1 (※)                                       | 0.11 ± 0.01                             | 石灰岩                                                               | 「革ん」「一世人」         |
| Ĺ |                                            | Li (µg/L)                                       | B (µg/L)                                         | AI (µg/L)                                             | V (µg/L)                                        | Cr (µg/L)                                      | Mn (µg/L)                                      | Fe (µg/L)                                         | Ni (µg/L)                                      | Cu (µg/L)                                      | Zn (µg/L)                                      | As (µg/L)                                           | Se (µg/L)                                      | Rb (µg/L)                                          | Sr (µg/L)                                     | Mo (µg/L)                                       | Cd (µg/L)                                      | Sb (µg/L)                                       | Cs (µg/L)                                           | Ba (µg/L)                                  | Pb (µg/L)                                      | U (µg/L)                                | 周辺地質<br>における ;<br>主要岩石                                            | 0 イ ジ キ ナ ※       |

表 5 球磨地域の水質測定結果

岩石を主体とする地域の河川水や水道水に含まれる V 濃度が著しく高いという特徴を指摘した研究報告がな されている<sup>3~4)</sup>。

今回, 芦北地域一帯が肥薩火山岩類とよばれる安山岩 類からなっていることから,各地下水の V 濃度は高濃 度になると予想された。実際,表2で示したとおり芦 北地域の V 濃度平均は7.67±4.20 µg/L であり,3 つの 地域のなかで一番高い濃度であった。標準偏差が大き くなっているのは,21.地蔵さんの水のみ V 濃度が 1µg/L を下回ったことによるものである。芦北の全て の湧水は安山岩の影響を受けていると考えられるため, この地点だけ V 濃度が低かった理由ははっきりしない が,1-1. で述べたとおり,21.地蔵さんの水は EC が低 く,地中における水と岩石・土壌類との接触が少なかったことで,他の地点ほど V が地下水に溶け込まなかったのではないかと推察した。

次に、球磨地域の調査地点ごとの金属成分の測定結 果について、周辺地質における主要な岩石とともに表 5 に示す。その結果、球磨川以南に位置する茂賀野水 源のみ V 濃度が 1 µ g/L を上回ることがわかった。そ の理由として、茂賀野水源は雨水が肥薩火山岩類の割 れ目等を通って地下に浸透したことによって形成され た地下水<sup>17)</sup>と考えられるのに対し、他の湧水は球磨川 以北に位置するため、芦北地域から主に球磨川以南に かけて分布する肥薩火山岩類の影響を受けなかったも のと推察した。なお、12.蔀地区水源地は主要な岩石に



図4 各地域の湧水における K<sup>+</sup>と Rb 濃度の関係

玄武岩が含まれ、V 濃度が  $0.95 \pm 0.10 \mu g/L$  と他の湧水 より若干高かった。1-2 で述べたとおり、イオン成分 において石灰岩の影響を強く受けていると思われるが、 湧水周辺に分布する玄武岩によって、V 濃度が多少増 加したものと考えられる。八代地域は、1.七郎次水源、 5.如見水源、10.さくらの雫で V 濃度が  $1 \mu g/L$  を上回 ったが、全体としては  $1 \mu g/L$  を下回るものが多かった。 八代地域は、主に堆積岩の地質であり、火成岩(特に 玄武岩や安山岩)の影響は受けていないことが示唆さ れた。

以上から,他の地域での研究事例と同様に,県南地 域においても,周辺の地質及び涵養域における地質が V濃度に影響を与えるものと考えられる。

## 2-3. ルビジウム(Rb)と地質の関係

表5の球磨地域の Rb 濃度に着目すると,15.浜宮神 社の湧水,16.池の王神社の湧水,17.天子の水におい て高濃度を示すとともに,13.石坂井川,14.茂賀野水 源でそれより低い濃度,11.岩戸水源,12.蔀地区水源地 で1µg/L 未満の低濃度となっていた。Rb が高濃度を 示した地点における主要な岩石を確認したところ,流 紋岩で共通していることが示唆された。今井ら<sup>18)</sup>が日 本全国の河川堆積物をもとに元素分布の特徴を明 らかにした日本の地球化学図によると,花崗岩や流紋 岩などの二酸化ケイ素の含有量が高い酸性岩でカリウ ムの濃度が高いとされている。そこで,各地域の地下 水における K<sup>+</sup>と Rb 濃度の関係を調べたところ,図4 のとおり正の相関が認められた。地下水周辺の主要な 岩石と Rb 濃度の関係を整理すると,球磨地域(火成 岩[流紋岩])>芦北地域(火成岩[安山岩])>八代 地域(堆積岩)=球磨地域(堆積岩[石灰岩],火成岩 [玄武岩])となる。このように,岩石の種類による影 響が地下水中の Rb 濃度に反映されていると考えられ る。

### まとめ

県南地域の金属成分の概況調査を実施した。また、 河川の金属成分と地質との関係性について考察した。

地下水の環境基準項目については,全調査地点にお いて環境基準値未満であり,通常から低濃度であると 考えられた。

地質と金属成分の関係性について考察したところ,2 つの元素について, 湧水周辺や涵養域の岩石の種類に よって, 濃度に違いが現れると考えられた。1 つは V であり, 二酸化ケイ素の含有量の少ない火成岩である 安山岩の地質で高濃度となるが, 二酸化ケイ素の含有



図5 各地域における地質と水質の関係

地図は産総研地質調査総合センターウェブサイト (https://gbank.gsj.jp/geonavi/geonavi.php) のシー ムレス地質図基本版をもとに,筆者が加筆修正したもの。 量の多い流紋岩では低濃度となった。また,堆積岩や 変成岩といった,火成岩と異なる岩石では流紋岩と同 程度に低い傾向であった。2つ目は Rb であり, V とは 逆に,流紋岩で高く,安山岩で低く,堆積岩や変成岩 ではさらに低いという傾向を示した。

これらのことをまとめると、図5のとおりとなる。 グループIは堆積岩地域で火成岩の影響を受けない水 質であるため、V及び Rbは低濃度を示す。地層の年 代は①ジュラ紀~前期白亜紀(秩父帯)及び②白亜紀 ~古第三紀(四万十帯)である。グループIIは火成岩 の一種である安山岩の影響を受けてV及びRbが1µg/L 以上を示す。地層の年代は③後期中新世以降である。 グループIIは火成岩の一種である流紋岩の影響により、 グループIIより Rb が高濃度となるものの、V には影 響しない。地層の年代は④中期更新世以降である。

これらは、文献で報告されている地質と金属成分の 関係性と合致するものとなり、県南地域の地質と金属 成分の関係性としては新たな知見を得ることができた と考える。

## 文 献

- 木庭亮一,松本尚己:熊本県保健環境科学研究所 報,37,123 (2007).
- 植木肇:熊本県保健環境科学研究所報, 35, 106 (2005).
- 3) 輿水達司,酒井陽一,戸村健児,大下一政:地球 環境,2(2),215 (1998).
- 4) 興水達司, 京谷智裕: 陸水学雑誌, 63, 113 (2002).
- 5) 道前香緒里,石賀裕明:島根大学地球資源環境学 研究報告,21,17 (2002).
- 6) 国土交通省河川局: 球磨川水系河川整備基本計画 (平成19年5月).
- 7) 斎藤眞, 宝田晋治, 利光誠一, 水野清秀, 宮崎一

博,星住英夫,濱崎聡志,阪口圭一,大野哲二, 村田泰章:地質ニュース 676 号,49 (2010).

- 8) 荒牧一利,田中浩二,古江研也,米田正:"水は 伝える熊本の湧泉",熊本の湧泉研究会(2004)
- 9) 水の国くまもと HP:水の名所 http://mizukuni.pref.kumamoto.jp/intro/pub/list.aspx?c \_id=21&redi=ON(平成 30 年 6 月閲覧)
- 環境省 HP:環境基準・法令等
  昭和 46 年 12 月 28 日付け環境庁告示第 59 号
  http://www.env.go.jp/kijun/mizu.html
  平成 5 年 4 月 28 日付け環水規第 121 号
- 11) 島野安雄:宇都宮文星短大紀要, 8, 43 (1997).
- 12) 藪崎志穂, 島野安雄:地下水学会誌, 51(2), 127 (2009).
- 13) 水収支研究グループ編:"地下水資源・環境論-その理論と実践-", p152 (1993) 共立出版.
- 14) 国立研究開発法人産業技術総合研究所地質調査総 合センターHP: 岩石の分類 https://www.gsj.jp/geology/fault-fold/formation/r-clas sification/index.html (平成 30 年 6 月閲覧)
- 15) 国立研究開発法人産業技術総合研究所地質調査総 合センターHP:地質図 navi https://gbank.gsj.jp/geonavi/geonavi.php (平成 30 年 6 月閲覧)
- Imai.N, Terashima.S, and Ando.A : Geochemical Journal, 29, 2991 (1995).
- 17) 茂賀野水源の現地立看板:上水道茂ヶ野水源の経 緯と由来
- 18) 今井登,寺島滋,太田充恒,御子柴(氏家)真澄, 岡井貴司,立花好子,富樫茂子,松久幸敬,金井 豊,上岡晃,谷口政碩:地質ニュース 604 号,30 (2004).